Создание антиматерии. Антивещество: прорыв в физике или угроза всем живущим? Антиматерия изучается в замедлителях частиц

Недавно членам коллаборации ALICE в ЦЕРН с рекордной точностью измерить массы ядер антивещества и даже оценить энергию, связывающую в них антипротоны с антинейтронами. Пока значимой разницы между этими параметрами в веществе и антивеществе найдено не было, но не это главное. Важно, что именно сейчас, в последние несколько лет, для измерений и наблюдений становятся доступны не только античастицы, но и антиядра и даже антиатомы. А значит, самое время разобраться с тем, что такое антиматерия и какое место ее исследования занимают в современной физике.

Давайте мы попробуем угадать некоторые из ваших первых вопросов про антиматерию.

А правда, что на основе антиматерии можно сделать сверхмощную бомбу? А что, в ЦЕРНе в самом деле накапливают антивещество, как показано в фильме Ангелы и демоны , и что это очень опасно? А правда, что антиматерия будет исключительно эффективным топливом для космических перелетов? А есть ли хоть доля правды в идее о позитронном мозге, которым Айзек Азимов в своих произведениях наделил роботов?...

Не секрет, что для большинства антиматерия ассоциируется с чем-то исключительно (взрыво)опасным, с чем-то подозрительным, с чем-то будоражащим воображение фантастическими обещаниям и огромными рисками - отсюда и подобные вопросы. Признаемся: законы физики всего этого прямо не запрещают. Однако реализация этих идей настолько далека от реальности, от современных технологий и от технологий ближайших десятилетий, что прагматический ответ простой: нет, для современного мира это всё неправда. Разговор на эти темы - это просто фантастика, опирающаяся не на реальные научные и технические достижения, а на их экстраполяцию далеко за пределы современных возможностей. Если хотите серьезно пообщаться на эти темы серьезно, приходите ближе к 2100 году. А пока что давайте поговорим о реальных научных исследованиях антиматерии.

Что такое антиматерия?

Наш мир устроен так, что для каждого сорта частиц - электронов, протонов, нейтронов, и т.п. - существуют античастицы (позитроны, антипротоны, антинейтроны). Они обладают той же массой и, если они нестабильны, тем же временем полураспада, но противоположными по знаку зарядами и другими числами, характеризующими взаимодействие. У позитронов та же масса, что у электронов, но только положительный заряд. У антипротонов - заряд отрицательный. Антинейтроны электрически нейтральны, так же как и нейтроны, но обладают противоположным барионным числом и состоят из антикварков. Из антипротонов и антинейтронов можно собрать антиядро. Добавив позитронов, мы создадим антиатомы, а накопив их - получим антивещество. Это всё и есть антиматерия .

И тут сразу есть несколько любопытных тонкостей, про которые стоит рассказать. Прежде всего, само по себе существование античастиц - это огромный триумф теоретической физики. Эта неочевидная, а для некоторых даже шокирующая идея была выведена Полем Дираком теоретически и поначалу воспринималась в штыки . Более того, даже после открытия позитронов многие все равно сомневались в существовании антипротонов. Во-первых, говорили они, Дирак придумал свою теорию для описания электрона, и не факт, что для протона она сработает. Вот, например, магнитный момент протона в несколько раз отличается от предсказания теории Дирака. Во-вторых, следы антипротонов долго искали в космических лучах, и что-то ничего не нашлось. В-третьих, они утверждали, - буквально повторяя наши слова, - что если есть антипротоны, тогда должны существовать и антиатомы, антизвезды и антигалактики, и мы бы обязательно их заметили по грандиозным космическим взрывам. Раз мы этого не видим, то наверно потому, что антивещества не бывает. Поэтому экспериментальное открытие антипротона в 1955 году на только что запущенном ускорителе Беватрон стало достаточно нетривиальным результатом, отмеченным Нобелевской премией по физике за 1959 год . В 1956 году на том же ускорителе был открыт и антинейтрон. Рассказ про эти поиски, сомнения, и достижения можно найти в многочисленных исторических очерках, например, вот в этом докладе или в недавней книге Франка Клоуза Antimatter .

Впрочем, надо отдельно сказать, что здравое сомнение в чисто теоретических утверждениях всегда полезно. Например, утверждение, что античастицы имеют ту же массу, что и частицы - это тоже теоретически полученный результат, он следует из очень важной CPT-теоремы. Да, на этом утверждении построена современная, многократно проверенная на опыте физика микромира. Но всё равно это равенство : кто знает, может быть так мы нащупаем границы применимости теории.

Другая особенность: не все силы микромира относятся одинаково к частицам и античастицам. Для электромагнитных и сильных взаимодействий разницы между ними нет, для слабых - есть. Из-за этого различаются некоторые тонкие детали взаимодействий частиц и античастиц, например, вероятности распада частицы A на набор частиц B и анти-A на набор анти-B (чуть подробнее про различия см. в подборке Павла Пахова). Эта особенность возникает потому, что слабые взаимодействия нарушают CP-симметрию нашего мира. А вот почему так получается - это одна из загадок элементарных частиц, и она требует выхода за пределы известного.

А вот еще одна тонкость: у некоторых частиц так мало характеристик, что античастицы и частицы вообще не отличаются друг от друга. Такие частицы называются истинно нейтральными. Это фотон, бозон Хиггса, нейтральные мезоны, состоящие из кварков и антикварков одинакового сорта. А вот с нейтрино ситуация пока непонятная: может быть, они истинно нейтральные (майорановские), а может - нет. Это имеет важнейшее значение для теории, описывающей массы и взаимодействия нейтрино. Ответ на этот вопрос реально станет крупным шагом вперед, потому что поможет разобраться с утройством нашего мира. Эксперимент пока ничего однозначного на этот счет не сказал. Но экспериментальная программа по нейтринным исследованиям настолько мощная, экспериментов ставится так много, что физики постепенно приближаются к разгадке.

Где она, эта антиматерия?

Античастица при встрече со своей частицей аннигилирует: обе частицы исчезают и превращаются в набор фотонов или более легких частиц. Вся энергия покоя превращается в энергию этого микровзрыва. Это самое эффективное превращение массы в тепловую энергию, в сотни раз превосходящее по эффективности ядерный взрыв. Но никаких грандиозных природных взрывов мы вокруг себя не видим; антиматерии в заметных количествах в природе нет. Однако отдельные античастицы вполне могут рождаться в разнообразных природных процессах.

Проще всего рождать позитроны. Самый простой вариант - радиоактивность, распады некоторых ядер за счет положительной бета-радиоактивности. Например, в экспериментах в качестве источника позитронов часто используется изотоп натрия-22 с периодом полураспада два с половиной года. Другой, довольно неожиданный природный источник - , во время которых иногда детектируются вспышки гамма-излучения от аннигиляции позитронов, а это значит, что позитроны там как-то родились.


Антипротоны и другие античастицы рождать труднее: энергии радиоактивного распада для этого не хватает. В природе они рождаются под действием космических лучей высоких энергий: космический протон, столкнувшись с какой-то молекулой в верхних слоях атмосферы, порождает потоки частиц и античастиц. Однако это происходит там, наверху, до земли антипроторы почти не долетают (о чем не знали те, кто в 40-х годах искал антипротоны в космических лучах), да и в лабораторию этот источник антипротонов не принесешь.

Во всех физических экспериментах антипротоны производят «грубой силой»: берут пучок протонов большой энергии, направляют его на мишень, и сортируют «адронные ошметки», которые в больших количествах рождаются в этом столкновении. Сортированные антипротоны выводят в виде пучка, а дальше либо разгоняют их до больших энергий для того, чтобы сталкивать с протонами (так работал, например, американский коллайдер Тэватрон), либо, наоборот, замедляют их и используют для более тонких измерений.

В ЦЕРНе, который может по праву гордиться долгой историей исследований антивещества , работает специальный «ускоритель» AD, «Антипротонный замедлитель», который как раз и занимается этой задачей. Он берет пучок антипротонов, охлаждает их (т.е. притормаживает), и дальше распределяет поток медленных антипротонов по нескольким специальным экспериментам. Кстати, если хотите посмотреть на состояние AD в реальном времени, то церновские онлайн-мониторы это позволяют.

Синтезировать антиатомы, даже простейшие, атомы антиводорода, уже совсем трудно. В природе они вообще не возникают - нет подходящих условий. Даже в лаборатории требуется преодолеть множество технических трудностей, прежде чем антипротоны соизволят соединиться с позитронами. Проблема в том, что антипротоны и позитроны, вылетающих из источников, все еще слишком горячие; они просто столкнутся друг с другом и разлетятся, а не образуются антиатом. Физики эти трудности всё же преодолевают, но довольно хитрыми методами ( , как это делается в одном из церновских экспериментов ASACUSA).

Что известно про антиядра?

Все антиатомные достижения человечества относятся только к антиводороду. Антиатомы других элементов до сих пор не синтезированы в лаборатории и не наблюдались в природе. Причина простая: антиядра создавать еще труднее, чем антипротоны.

Единственный известный нам способ создавать антиядра - это сталкивать тяжелые ядра больших энергий и смотреть, что там получается. Если энергия столкновений велика, в нем родятся и разлетятся во все стороны тысячи частиц, в том числе, антипротоны и антинейтроны. Антипротоны и антинейтроны, случайно вылетевшие в одном направлении, могут объединиться друг с другом - получится антиядро.


Детектор ALICE умеет различать разные ядра и антиядра по энерговыделению и направлению закрутки в магнитном поле.

Изображение: CERN


Метод простой, но не слишком неэффективный: вероятность синтезировать ядро таким способом резко падает при увеличении числа нуклонов. Легчайшие антиядра, антидейтроны, впервые наблюдались ровно полвека назад. Антигелий-3 увидели в 1971 году. Известен также антитритон и антигелий-4, причем последний был открыт совсем недавно , в 2011 году. Более тяжелые антиядра до сих пор не наблюдались.

Два параметра, описывающие нуклон-нуклонные взаимодействия (длина рассеяния f0 и эффективный радиус d0) для разных пар частиц. Красная звездочка - результат для пары антипротонов, полученный коллаборацией STAR.

К сожалению, антиатомов таким способом не сделаешь. Антиядра не только рождаются редко, но и обладают слишком большой энергией и вылетают во все стороны. Пытаться их отловить на коллайдере, чтобы затем отвести по специальному каналу и охладить, нереально.

Впрочем, иногда достаточно внимательно отследить антиядра на лету, чтобы получить кое-какую интересную информацию об антиядерных силах, действующих между антинуклонами. Самая простая вещь - это аккуратно измерить массу антиядер, сравнить ее с суммой масс антипротонов и антинейтронов, и вычислить дефект масс, т.е. энергию связи ядра. Это недавно , работающий на Большом адронном коллайдере; энергия связи для антидейтрона и антигелия-3 в пределах погрешности совпала с обычными ядрами.

Другой, более тонкий эффект изучил эксперимент STAR на американском коллайдере тяжелых ионов RHIC. Он измерил угловое распределение рожденных антипротонов и выяснил, как оно меняется, когда два антипротона вылетают в очень близком направлении. Корреляции между антипротонами позволили впервые измерить свойства действующих между ними «антиядерных» сил (длину рассеяния и эффективный радиус взаимодействия); они совпали с тем, что известно про взаимодействие протонов.

Есть ли антиматерия в космосе?

Когда Поль Дирак вывел из своей теории существование позитронов, он вполне допускал, что где-то в космосе могут существовать настоящие антимиры. Сейчас мы знаем, что звезд, планет, галактик из антивещества в видимой части Вселенной нет. Дело даже не в том дело, что не видно аннигиляционных взрывов; просто совершенно невообразимо, как они вообще могли бы образоваться и дожить до настоящего времени в постоянно эволюционирующей вселенной.

Но вот вопрос «как так получилось» - это еще одна большущая загадка современной физики; на научном языке она называется проблемой бариогенеза . Согласно космологической картине мира, в самой ранней вселенной частиц и античастиц было поровну. Затем, в силу нарушения CP-симметрии и барионного числа, в динамично развивающейся вселенной должен был появиться небольшой, на уровне одной миллиардной, избыток материи над антиматерией. При остывании вселенной все античастицы проаннингилировали с частицами, выжил лишь этот избыток вещества, который и породил ту вселенную, которую мы наблюдаем. Именно из-за него в ней осталось хоть что-то интересное, именно благодаря нему мы вообще существуем. Как именно возникла эта асимметрия - неизвестно. Теорий существует много, но какая из них верна - неизвестно. Ясно лишь, что это точно должна быть какая-то Новая физика, теория, выходящая за пределы Стандартной модели, за границы экспериментально проверенного.


Три варианта того, откуда могут взяться античастицы в космических лучах высокой энергии: 1 - они могут просто возникать и разгоняться в «космическом ускорителе», например в пульсаре; 2 - они могут рождаться при столкновениях обычных космических лучей с атомами межзвездной среды; 3 - они могут возникать при распаде тяжелых частиц темной материи.

Хоть планет и звезд из антивещества нет, антиматерия в космосе все же присутствует. Потоки позитронов и антипротонов разных энергий регистрируются спутниковыми обсерваториями космических лучей, такими как PAMELA, Fermi, AMS-02. Тот факт, что позитроны и антипротоны прилетают к нам из космоса, означает, что они где-то там рождаются. Высокоэнергетические процессы, которые могут их породить, в принципе известны: это сильно замагниченные окрестности нейтронных звезд, разные взрывы, ускорение космических лучей на фронтах ударных волн в межзвездной среде, и т.п. Вопрос в том, могут ли они объяснить все наблюдаемые свойства потока космических античастиц. Если окажется, что нет, это будет свидетельством в пользу того, что некоторая их доля возникает при распаде или аннигиляции частиц темной материи.

Здесь тоже есть своя загадка. В 2008 году обсерватория PAMELA обнаружила подозрительно большое количество позитронов больших энергий по сравнению с тем, что предсказывало теоретическое моделирование. Этот результаты был надавно подтвержден установкой AMS-02 - одним из модулей Международной Космической Станции и вообще самым крупным детектором элементарных частиц, запущенным в космос (и собранным догадайтесь где? - правильно, в ЦЕРНе). Этот избыток позитронов будоражит ум теоретиков - ведь ответственным за него могут оказаться не «скучные» астрофизические объекты, а тяжелые частицы темной материи, которые распадаются или аннигилируют в электроны и позитроны. Ясности тут пока нет, но установка AMS-02, а также многие критически настроенные физики, очень тщательно изучают это явление.


Отношение антипротонов к протонам в космических лучах разной энергии. Точки - экспериментальные данные, разноцветные кривые - астрофизические ожидания с разнообразными погрешностями.

Изображение: Cornell University Library

С антипротонами тоже ситуация неясная. В апреле этого года AMS-02 на специальной научной конференции представил предварительные результаты нового цикла исследований. Главной изюминкой доклада стало утверждение, что AMS-02 видит слишком много антипротонов высокой энергии - и это тоже может быть намеком на распады частиц темной материи. Впрочем, другие физики с таким бодрым выводом не согласны . Сейчас считается, что антипротонные данные AMS-02, с некоторой натяжкой, могут быть объяснены и обычными астрофизическими источниками. Так или иначе, все с нетерпением ждут новых позитронных и антипротонных данных AMS-02.

AMS-02 зарегистрировала уже миллионы позитронов и четверть миллиона антипротонов. Но у создателей этой установки есть светлая мечта - поймать хоть одно антиядро. Вот это будет настоящая сенсация - совершенно невероятно, чтобы антиядра родились где-то в космосе и долетели бы до нас. Пока что ни одного такого случая не обнаружено, но набор данных продолжается, и кто знает, какие сюрпризы готовит нам природа.

Антиматерия - антигравитирует? Как она вообще чувствует гравитацию?

Если опираться только на экспериментально проверенную физику и не вдаваться в экзотические, никак пока не подтвержденные теории, то гравитация должна действовать на антиматерию точно так же, как на материю. Никакой антигравитации для антиматерии не ожидается. Если же позволить себе заглянуть чуть дальше, за пределы известного, то чисто теоретически возможны варианты , когда в нагрузку к обычной универсальной гравитационной силе существует нечто добавочное, которое по-разному действует на вещество и антивещество. Какой бы ни призрачной казалась эта возможность, ее требуется проверить экспериментально, а для этого надо поставить опыты по проверке того, как антиматерия чувствует земное притяжение.

Долгое время это толком не удавалось сделать по той простой причине, что для этого надо создать отдельные атомы антивещества, поймать их в ловушку, и провести с ними эксперименты. Сейчас это делать научились, так что долгожданная проверка уже не за горами.

Главный поставщик результатов - всё тот же ЦЕРН со своей обширной программой по изучению антивещества. Некоторые из этих экспериментов уже косвенно проверили, что с гравитацией у антиматерии всё в порядке. Например, обнаружил, что (инертная) масса антипротона совпадает с массой протона с очень высокой точностью. Если бы гравитация действовала на антипротоны как-то иначе, физики заметили бы разницу - ведь сравнение производилось в одной и той же установке и в одинаковых условиях. Результат этого эксперимента: действие гравитации на антипротоны совпадает с действием на протоны с точностью лучше одной миллионной.


Впрочем, это измерение - косвенное. Для пущей убедительность хочется поставить прямой эксперимент: взять несколько атомов антивещества, уронить их и посмотреть, как они будут падать в поле тяжести. Такие эксперименты тоже проводятся или готовятся в ЦЕРНе. Первая попытка была не слишком впечатляющей. В 2013 году эксперимент ALPHA , - который к тому времени уже научился удерживать облачко антиводорода в своей ловушке, - попробовал определить , куда будут падать антиатомы, если ловушку отключают. Увы, из-за низкой чувствительности эксперимента однозначного ответа получить не удалось: времени прошло слишком мало, антиатомы метались в ловушке туда-сюда, и вспышки аннигиляции случались то здесь, то там.

Ситуацию обещают кардинально улучшить два других церновских эксперимента: GBAR и AEGIS . Оба эти эксперимента проверят разными способами, как падает в поле тяжести облачко сверххолодного антиводорода. Их ожидаемая точность по измерению ускорения свободного падения для антивещества - около 1%. Обе установки сейчас находятся в стадии сборки и отладки, а основные исследования начнутся в 2017 году, когда антипротонный замедлитель AD будет дополнен новым накопительным кольцом ELENA .


Варианты поведения позитрона в твердом веществе.

Изображение: nature.com

Что случится, если позитрон попадет в вещество?

Образование молекулярного позитрония на кварцевой поверхности.

Изображение: Clifford M. Surko / Atomic physics: A whiff of antimatter soup

Если вы дочитали до этого места, то уже прекрасно знаете, что как только частица антивещества попадает в обычное вещество, происходит аннигиляция: частицы и античастица исчезают и превращаются в излучение. Но насколько быстро это происходит? Представим себе позитрон, который прилетел из вакуума и вошел в твердое вещество. Проаннигилирует ли он при соприкосновении с первым же атомом? Вовсе не обязательно! Аннилигяция электрона и позитрона - процесс не мгновенный; он требует длительного по атомным масштабам времени. Поэтому позитрон успевает прожить в веществе яркую и насыщенную нетривиальными событиями жизнь.

Во-первых, позитрон может подхватить бесхозный электрон и образовать связанное состояние - позитроний (Ps). При подходящей ориентации спинов, позитроний может жить десятки наносекунд до аннигиляции. Находясь в сплошном веществе, он успеет за это время столкнуться с атомами миллионы раз, ведь тепловая скорость позитрония при комнатной температуре - около 25 км/сек.

Во-вторых, дрейфуя в веществе, позитроний может выйти на поверхность и залипнуть там - это позитронный (а точнее, позитрониевый) аналог адсорбции атомов. При комнатной температуре он не сидит на одном месте, а активно путешествует по поверхности. И если это не внешняя поверхность, а пора нанометрового размера, то позитроний оказывается пойманным в ней на длительное время.

Дальше - больше. В стандартном материале для таких экспериментов, пористом кварце, поры не изолированы, а объединены наноканалами в общую сеть. Тепленький позитроний, ползая по поверхности, успеет обследовать сотни пор. А поскольку позитрониев в таких экспериментах образуется много и почти все они вылезают в поры, то рано или поздно они натыкаются друг на друга и, взаимодействуя, иногда образуют самые настоящие молекулы - молекулярный позитроний , Ps 2 . Дальше уже можно изучать, как ведет себя позитрониевый газ, какие у позитрония есть возбужденые состояния и т.д. И не думайте, что это чисто теоретические рассуждения; все перечисленные эффекты уже проверены и изучены экспериментально.

Есть ли у антивещества практические применения?

Разумеется. Вообще, любой физический процесс, если он открывает перед нами некую новую грань нашего мира и не требует при этом каких-то сверхзатрат, обязательно находит практические применения. Причем такие применения, до которых бы мы сами не догадались, если бы не открыли и не изучили предварительно научную сторону этого явления.

Самым известным прикладным применением античастиц является ПЭТ, позитронно-эмиссионная томография . Вообще, у ядерной физики есть впечатляющий послужной список медицинских применений, и античастицы тут тоже не остались без дела. При ПЭТ в организм пациента вводят маленькую дозу препарата, содержащего нестабильный изотоп с коротким временем жизни (минуты и часы) и распадающийся за счет положительного бета-распада. Препарат накапливается в нужных тканях, ядра распадаются и испускают позитроны, которые аннигилируют поблизости и выдают два гамма-кванта определенной энергии. Детектор регистрирует их, определяет направление и время их прилета, и восстанавливает то место, где произошел распад. Так удается построить трехмерную карту распределения вещества с высоким пространственным разрешением и с минимальной радиационной дозой.

Позитроны можно применять и в материаловедении, например, для измерения пористости вещества . Если вещество сплошное, то позитроны, застрявшие в веществе на достаточной глубине, довольно быстро аннигилируют и испускают гамма-кванты. Если же внутри вещества есть нанопоры, аннигиляция задерживается, поскольку позитроний залипает на поверхности поры. Измеряя эту задержку, можно узнать степень нанопористости вещества бесконтактным и неразрушающим методом. Как иллюстрация этой методики - недавняя работа про то, как возникают и затягиваются нанопоры в тончайшем слое льда при осаждении пара на поверхность. Аналогичный подход работает и при изучении структурных дефектов в полупроводниковых кристаллах, например, вакансий и дислокаций, позволяет измерить структурную усталость материала.

Медицинское применение может найтись и для антипротонов. Сейчас в том же ЦЕРНе проводится эксперимент ACE , который изучает воздействие антипротонного пучка на живые клетки. Его цель - изучить перспективы использования антипротонов для терапии раковых опухолей.

Энерговыделение ионного пучка и рентгена при прохождении сквозь вещество.

Изображение: Johannes Gutleber / CERN

Эта идея может с непривычки ужаснуть читателя: как так, антипротонным пучком - и по живому человеку?! Да, и это намного безопаснее, чем облучать глубокую опухоль рентгеном! Антипротонный пучок специально подобранной энергии становится в руках хирурга эффективным инструментом, с помощью которого можно выжигать опухоли глубоко внутри тела и минимизировать воздействии на окружающие ткани. В отличие от рентгена, который жжет всё, что попадает под луч, тяжелые заряженные частицы на своем пути сквозь вещество выделяют основную долю энергии на последних сантиметрах перед остановкой. Настраивая энергию частиц, можно варьировать глубину, на которой останавливаются частицы; вот на эту область размером в миллиметры и придется основное радиационное воздействие.

Такая радиотерапия протонным пучком уже давно используется во многих хорошо оснащенных клиниках мира. В последнее время некоторые из них переходят на ионную терапию, в которой используется пучок не протонов, а ионов углерода. Для них профиль энерговыделения еще контрастнее, а значит, эффективность пары «терапевтическое воздействия против побочных эффектов» возрастает. Но уже давно предлагается попробовать для этой цели и антипротоны. Ведь они, попадая в вещество, не просто отдают свою кинетическую энергию, но еще и аннигилируют после остановки - и это усиливает энерговыделение в несколько раз. Где оседает это дополнительное энерговыделение - сложный вопрос, и его требуется внимательно изучить, прежде чем запускать клинические испытания.

Именно этим и занимается эксперимент ACE. В ходе него исследователи пропускают пучок антипротонов через кюветку с бактериальной культурой и измеряют их выживаемость в зависимости от места, от параметров пучка, и от физических характеристик окружающей среды. Такой методичный и, пожалуй, скучноватый сбор технических данных - важный начальный этап любой новой технологии.


Игорь Иванов

В 1930-м году известный английский физик-теоретик Поль Дирак, выводя релятивистское уравнение движения для поля электрона, получил также и решение для некой иной частицы с той же массой и противоположным, положительным, электрическим зарядом. Единственная известная в то время частица с положительным зарядом – протон, не могла быть этим двойником, так как значительно отличалась от электрона, в том числе и в тысячи раз большей массой.

Позже, в 1932-м году американский физик Карл Андерсон подтвердил предсказания Дирака. Изучая космические лучи, он открыл античастицу электрона, которая сегодня называется позитрон. Спустя 23 года на американском ускорителе были обнаружены антипротоны, а еще через год – антинейтрон.

Частицы и античастицы

Как известно, любая элементарная частица обладает рядом характеристик, чисел, описывающих ее. Среди них следующие:

  • Масса – физическая величина, которая определяет гравитационное взаимодействие объекта.
  • Спин – собственный момент импульса элементарной частицы.
  • Электрический заряд – характеристика, указывающая на возможность создания телом электромагнитного поля, и участия в электромагнитном взаимодействии.
  • Цветовой заряд – абстрактное понятие, которое объясняет взаимодействие кварков и формирование ими других частиц — адронов.

Также другие различные квантовые числа, определяющие свойства и состояния частиц. Если описывать античастицу, то простым языком – это зеркальное отображение частицы, с той же массой и электрическим зарядом. Почему же ученых так заинтересовали частицы, которые просто отчасти схожи и частично отличны от своих подлинников?

Оказалось, что столкновение частицы и античастицы ведет к аннигиляции – их уничтожению, и высвобождению соответствующей им энергии в виде других высокоэнергетических частиц, то есть маленький взрыв. Мотивирует к изучению античастиц и тот факт, что вещество, состоящее из античастиц (антивещество) самостоятельно не образуется в природе, согласно наблюдениям ученых.

Общие сведения об антивеществе

Выходя из вышесказанного, становится ясно, что наблюдаемая Вселенная состоит из материи, вещества. Однако, следуя известным физическим законам, ученые уверены в том, что вследствие Большого Взрыва обязаны образоваться в равном количестве вещество и антивещество, чего мы не наблюдаем. Очевидно, что наши представления о мире являются неполными, и либо ученые что-то упустили в своих расчетах, либо где-то за пределами нашей видимости, в отдаленных частях Вселенной имеется соответствующее количество антиматерии, так сказать «мир из антивещества».

Этот вопрос антисимметрии представляется одной из самых известных нерешенных физических задач.

Согласно современным представлениям, структура вещества и антивещества почти не отличаются, по той причине, что электромагнитное и сильное взаимодействия, определяющие устройство материи, одинаково действуют как по отношению частицам, так и античастицам. Данный факт был подтвержден в ноябре 2015 года на коллайдере RHIC в США, когда российские и зарубежные ученые измерили силу взаимодействия антипротонов. Она оказалась равной силе взаимодействия протонов.

Получение антивещества

Рождение античастиц обычно происходит при образовании пар частица-античастица. Если при столкновении электрона и его античастицы – позитрона, высвобождается два гамма-кванта, то для создания электрон-позитронной пары понадобится высокоэнергетический гамма-квант, взаимодействующий с электрическим полем ядра атома. В лабораторных условиях это может происходить на ускорителях или в экспериментах с лазерами. В природных условиях – в пульсарах и около черных дыр, а также при взаимодействии космических лучей с некоторыми видами вещества.

Что такое антивещество? Для понимания достаточно привести следующий пример. Простейшее вещество, атом водорода состоит из одного протона, определяющего ядро, и электрона, который вращается вокруг него. Так вот антиводород – это антивещество, атом которого состоит из антипротона и вращающегося вокруг него позитрона.

Общий вид установки ASACUSA в ЦЕРНе, предназначенной для получения и изучения антиводорода

Несмотря на простую формулировку, синтезировать антиводород достаточно сложно. И все же в 1995-м году на ускорителе LEAR в ЦЕРНе ученым удалось создать 9 атомов такого антивещества, которые прожили всего 40 наносекунд и распались.

Позже, при помощи массивных устройств была создана магнитная ловушка, которая удержала 38 атомов антиводорода в течение 172 миллисекунд (0,172 секунды), а после 170 000 атомов антиводорода – 0,28 аттограмм (10 -18 грамм). Такого объема антивещества может быть достаточно для дальнейшего изучения, и это успех.

Стоимость антивещества

Сегодня с уверенностью можно заявить, что самое дорогое вещество в мире не калифорний, реголит или графен, и, конечно же, не золото, а антивещество. Согласно подсчетам NASA –создание одного миллиграмма позитронов будет стоить около 25 миллионов долларов, а 1 г антиводорода оценивается в 62,5 триллиона долларов. Интересно, что нанограмм антивещества, объем, который был использован за 10 лет в экспериментах ЦЕРНа, обошелся организации в сотни миллионов долларов.

Применение

Изучение антиматерии несет в себе весомый для человечества потенциал. Первое и наиболее интересное устройство, теоретически работающее на антивеществе – варп-двигатель. Некоторые могут помнить таковой из известного сериала «Звездный путь» («Star Trek»), двигатель питался энергией от реактора, работающего на основе принципа аннигиляции материи и антиматерии.

В действительности существует несколько математических моделей подобного двигателя, и согласно их расчетам, для космических кораблей будущего понадобится совсем немного античастиц. Так, семимесячный полет до Марса может сократиться в продолжительности до месяца, за счет 140 нанограммов антипротонов, которые выступят катализатором ядерного деления в реакторе корабля. Благодаря подобным технологиям могут осуществиться и межгалактические перелеты, которые позволят человеку подробно изучить другие звездные системы, и в будущем колонизировать их.

Однако, антивещество, как и многие другие научные открытия, может нести угрозу человечеству. Как известно, ужаснейшая катастрофа, атомная бомбардировка Хиросимы и Нагасаки была произведена при помощи двух атомных бомб, общая масса которых составляет 8,6 тонн, а мощность – около 35 килотонн. А вот при столкновении 1 кг вещества и 1 кг антивещества высвобождается энергия равная 42 960 килотонн. Самая мощная бомба, когда-либо разработанная человечеством — АН602 или «Царь-бомба» высвободила энергию около 58 000 килотонн, но весила 26,5 тонн! Подводя итоги всего вышесказанного, можно с уверенностью сказать, что технологии и изобретения на основе антиматерии могут привести человечество, как к небывалому прорыву, так и к полному самоуничтожению.

Антиматерия — это противоположность нормальной материи. Более конкретно, субатомные частицы антивещества обладают свойствами, противоположными свойствам вещества, характерного для обычного вещества.

Электрический заряд этих частиц меняется на противоположный. Антиматерия была создана вместе с материей после Большого взрыва, но антиматерия редко встречается в сегодняшней вселенной, и ученые не знают, почему.

Чтобы лучше понять антиматерию, нужно больше знать о материи. Материя состоит из атомов, которые являются основными единицами химических элементов, таких как водород, гелий или кислород. Каждый элемент имеет определенное количество атомов: водород имеет один атом; гелий имеет два атома; и так далее.

Вселенная атома сложна, так как она полна экзотических частиц, которые физики только начинают понимать. С простой точки зрения, атомы имеют частицы, которые известны как , протоны и внутри них.

Что вы получите, когда объедините теорию относительности и квантовую механику? Здесь нет шуток — просто революционная концепция, придуманная лауреатом Нобелевской премии П. Дирак после того, как он обнаружил странное несоответствие в уравнении.

В физике частиц каждый тип частицы имеет ассоциированную античастицу с той же массой, но с противоположными физическими зарядами (например, электрический заряд). Например, античастица электрона является антиэлектроном (который часто называют позитроном). В то время как электрон имеет отрицательный электрический заряд, позитрон имеет положительный электрический заряд и естественно генерируется в некоторых типах радиоактивного распада. Обратное также верно: античастицей позитрона является электрон.

Некоторые частицы, такие как фотон, являются их собственной античастицей. В противном случае для каждой пары частиц с античастицами одна обозначается как нормальная материя (из которой мы сделаны), а другая (обычно с приставкой «анти»), как в антиматерии.

Пары частицы-античастицы могут аннигилировать друг друга, производя фотоны; поскольку заряды частицы и античастицы противоположны, общий заряд сохраняется. Например, позитроны, образующиеся при естественном радиоактивном распаде, быстро аннигилируют себя электронами, производя пары гамма-лучей, процесс, используемый в позитронно-эмиссионной томографии.

Законы природы почти симметричны относительно частиц и античастиц. Например, антипротон и позитрон могут образовывать анти-водородный атом, который, как полагают, обладает теми же свойствами, что и атом водорода. Это приводит к вопросу о том, почему образование материи после Большого взрыва привело к созданию вселенной, состоящей почти целиком из материи.

Где это?

Частицы антивещества создаются в сверхскоростных столкновениях. В первые моменты после Большого Взрыва существовала только энергия. По мере того как вселенная охлаждалась и расширялась, частицы как материи, так и антиматерии были получены в равных количествах. Почему материя стала доминировать, это вопрос, который ученые еще не обнаружили.

Одна теория предполагает, что в начале было создано более нормальное вещество, чем антиматерия, так что даже после взаимной аннигиляции было достаточно нормальной материи, оставшейся для образования звезд, галактик и нас.

Открытие антиматерии

Антиматерия была впервые открыта в 1928 году английским физиком Полом Дираком, которого журнал New Scientist назвал «величайшим британским теоретиком, как сэр Исаак Ньютон».

Что именно было уравнением Дирака? Короче говоря, это было обширное расширение теории относительности Эйнштейна в сочетании с квантовой механикой так, как никогда ранее не делалось математически. Дирак обнаружил, что это уравнение учитывает существование частиц, как мы их знаем, а также противоположно заряженных частиц с магнитными моментами, противоположными моментам соответствующих частиц вещества. Он назвал эти противоположно заряженные частицы античастицами или антивеществами.

По словам журнала, Дирак объединил специальное уравнение относительности Эйнштейна (которое говорит, что свет — это самая быстрая движущаяся вещь во Вселенной) и квантовая механика (описывающая то, что происходит в атоме). Он обнаружил, что уравнение работает для электронов с отрицательным зарядом или с положительными зарядами.

Когда частицы антивещества взаимодействуют с частицами материи, они аннигилируют друг друга и производят энергию. Это привело к тому, что инженеры предположили, что двигатель на антиматерии космического аппарата может быть эффективным способом исследования Вселенной.

НАСА предупреждает, что существует огромная уловка с этой идеей: для создания миллиграмма антиматерии требуется около 100 миллиардов долларов.

«Чтобы быть коммерчески жизнеспособным, эта цена должна снизиться примерно в 10 000 раз», — пишет агентство. Выработка энергии создает еще одну головную боль: «Для создания антивещества требуется гораздо больше энергии, чем энергия, которую можно получить от реакции антивещества».

Но это не помешало НАСА и другим группам работать над улучшением технологии, чтобы сделать двигатель на антиматерии возможным.

Антивещество – это материя, состоящая исключительно из античастиц. В природе у каждой элементарной частицы есть античастица. Для электрона это будет позитрон, а для положительно заряженного протона – антипротон. Атомы обычного вещества – иначе оно называется койновещество - состоят из положительно заряженного ядра, вокруг которого движутся электроны. А отрицательно заряженные ядра атомов антивещества, в свою очередь, окружены антиэлектронами.

Силы, которые определяют структуру материи, и для частиц и для античастиц одинаковы. Проще говоря, частицы различаются только знаком заряда. Характерно, что «антивещество» - не совсем верное название. Оно по сути своей лишь разновидность вещества, обладающее теми же свойствами и способное на создание притяжения.

Аннигиляция

Фактически это процесс столкновения позитрона и электрона. В результате происходит взаимоуничтожение (аннигиляция) обеих частиц с выделением огромной энергии. Аннигиляция 1 грамма антивещества эквивалентна взрыву тротилового заряда в 10 килотонн!

Синтез

В 1995 году было заявлено, что синтезированы первые девять атомов антиводорода. Они прожили 40 наносекунд и погибли, высвободив энергию. А уже в 2002 году число полученных атомов исчислялось сотнями. Но все полученные античастицы могли прожить только наносекунды. Дело изменилось с запуском адронного коллайдера: удалось синтезировать 38 атомов антиводорода и удержать их целую секунду. За этот период времени стало возможным провести некоторые исследования строения антиматерии. Удерживать частицы научились после создания специальной магнитной ловушки. В ней, для достижения нужного эффекта, создаётся очень низкая температура. Правда, такая ловушка – дело очень громоздкое, сложное и дорогое.

В трилогии С. Снегова «Люди как боги» процесс аннигиляции используется для межгалактических полётов. Герои романа, используя её, превращают в пыль звёзды и планеты. Но в наше время получить антивещество гораздо сложнее и дороже, чем прокормить человечество.

Сколько стоит антивещество

Один миллиграмм позитронов должен стоить 25 млрд. долларов. А за один грамм антиводорода придётся выложить 62,5 триллиона долларов.

Ещё не проявился такой щедрый человек, что смог бы купить хоть одну сотую грамма. Несколько сот миллионов швейцарских франков пришлось заплатить за одну миллиардную долю грамма, чтобы получить материал для экспериментальных работы по столкновению частиц и античастиц. Пока нет такой субстанции в природе, которая была бы дороже антивещества.

А вот с вопросом веса антиматерии всё достаточно просто. Поскольку она отличается от материи обычной только зарядом, то все остальные характеристики у неё те же. Получается, что один грамм антивещества будет весить именно один грамм.

Мир из антивещества

Если принять за истину, что был, то в результате этого процесса должно было возникнуть равное количества и вещества, и антивещества. Так почему же мы не наблюдаем рядом с собой объектов, состоящих из антиматерии? Ответ достаточно прост: два типа вещества не могут сосуществовать вместе. Они обязательно взаимоуничтожатся. Вполне вероятно, что галактики и даже вселенные из антивещества существуют , и мы даже видим некоторые из них. Но от них исходят такие же излучения, идёт такой же свет, как и от обычных галактик. Поэтому пока невозможно точно утверждать, существует антимир или это красивая сказка.

Опасно ли?

Многие полезные открытия человечество превращало в средства уничтожения. Антивещество в этом смысле не может быть исключением. Более мощного оружия, чем основанного на принципе аннигиляции, представить пока нельзя. Возможно, не так и плохо, что пока не получается добыть и сохранить антивещество? Не станет ли оно роковым звоночком, который услышит человечества в свой последний день?

Экология познания: Антиматерия давно была предметом научной фантастики. В книге и фильме «Ангелы и демоны» профессор Лэнгдон пытается спасти Ватикан от бомбы из антиматерии. Космический корабль «Энтерпрайз» из «Звездного пути» использует двигатель на основе

Антиматерия давно была предметом научной фантастики. В книге и фильме «Ангелы и демоны» профессор Лэнгдон пытается спасти Ватикан от бомбы из антиматерии. Космический корабль «Энтерпрайз» из «Звездного пути» использует двигатель на основе аннигилирующей антиматерии для путешествий быстрее скорости света. Но антиматерия также предмет нашей с вами реальности. Частицы антиматерии практически идентичны своим материальным партнерам, за исключением того, что переносят противоположный заряд и спин. Когда антиматерия встречает материю, они мгновенно аннигилируют в энергию, и это уже не вымысел.

Хотя бомбы из антиматерии и корабли на основе этого же топлива пока не представляются возможными на практике, есть много фактов об антиматерии, которые вас удивят или позволят освежить в памяти то, что вы уже знали.

1. Антиматерия должна была уничтожить всю материю во Вселенной после Большого Взрыва

Согласно теории, Большой Взрыв породил материю и антиматерию в равных количествах. Когда они встречаются, происходит взаимное уничтожение, аннигиляция, и остается только чистая энергия. Исходя из этого, мы не должны существовать.

Но мы существуем. И насколько знают физики, это потому, что на каждый миллиард пар материи-антиматерии была одна лишняя частица материи. Физики всеми силами пытаются объяснить эту асимметрию.

2. Антиматерия ближе к вам, чем вы думаете

Небольшие количества антиматерии постоянно проливаются дождем на Землю в виде космических лучей, энергетических частиц из космоса. Эти частицы антивещества достигают нашей атмосферы с уровнем от одной до более сотни на квадратный метр. Ученые также располагают свидительствами того, что антивещество рождается во время грозы.

Есть и другие источники антивещества, которые находятся ближе к нам. Бананы, например, вырабатывают антивещество, испуская один позитрон - антивещественный экивалент электрона - примерно раз в 75 минут. Это происходит потому, что бананы содержат небольшое количество калия-40, встречающегося в природе изотопа калия. При распаде калия-40 иногда рождается позитрон.

Наши тела тоже содержат калий-40, а значит, и вы излучаете позитроны. Антиматерия аннигилирует мгновенно при контакте с материей, поэтому эти частицы антивещества живут не очень долго.

3. Людям удалось создать совсем немного антиматерии

Аннигиляция антиматерии и материи обладает потенциалом высвобождения огромного количества энергии. Грамм антиматерии может произвести взрыв размером с ядерную бомбу. Впрочем, люди произвели не так много антиматерии, поэтому бояться нечего.

Все антипротоны, созданные на ускорителе частиц Тэватроне в Лаборатории Ферми, едва ли наберут 15 нанограммов. В CERN на сегодняшний день произвели только порядка 1 нанограмма. В DESY в Германии - не больше 2 нанограммов позитронов.

Если вся антиматерия, созданная людьми, аннигилирует мгновенно, ее энергии не хватит даже на то, чтобы вскипятить чашку чая.

Проблема заключается в эффективности и стоимости производства и хранения антивещества. Создание 1 грамма антиматерии требует порядка 25 миллионов миллиардов киловатт-часов энергии и стоит выше миллиона миллиарда долларов. Неудивительно, что антивещество иногда включают в список десяти самых дорогих веществ в нашем мире.

4. Существует такая вещь, как ловушка для антиматерии

Для изучения антиматерии вам нужно предотвратить ее аннигиляцию с материей. Ученые нашли несколько способов это осуществить.

Заряженные частицы антивещества, вроде позитронов и антипротонов, можно хранить в так называемых ловушках Пеннинга. Они похожи на крошечные ускорители частиц. Внутри них частицы движутся по спирали, пока магнитные и электрические поля удерживают их от столкновения со стенками ловушки.

Однако ловушки Пеннинга не работают для нейтральных частиц вроде антиводорода. Поскольку у них нет заряда, эти частицы нельзя ограничить электрическими полями. Они удерживаются в ловушках Иоффе, которые работают, создавая область пространства, где магнитное поле становится больше во всех направлениях. Частицы антивещества застревают в области с самым слабым магнитным полем.

Магнитное поле Земли может выступать в качестве ловушек антивещества. Антипротоны находили в определенных зонах вокруг Земли - радиационных поясах Ван Аллена.

5. Антиматерия может падать (в прямом смысле слова)

Частицы материи и антиматерии обладают одной массой, но различаются в свойствах вроде электрического заряда и спина. Стандартная модель предсказывает, что гравитация должна одинаково воздействовать на материю и антиматерию, однако это еще предстоит выяснить наверняка. Эксперименты вроде AEGIS, ALPHA и GBAR работают над этим.

Наблюдать за гравитационным эффектом на примере антиматерии не так просто, как смотреть на падающее с дерева яблоко. Эти эксперименты требуют удержания антиматерии в ловушке или замедления ее путем охлаждения до температур чуть выше абсолютного нуля. И поскольку гравитация - самая слабая из фундаментальных сил, физики должны использовать нейтральные частицы антиматерии в этих экспериментах, чтобы предотвратить взаимодействие с более мощной силой электричества.

6. Антиматерия изучается в замедлителях частиц

Вы слышали об ускорителях частиц, а о замедлителях частиц слышали? В CERN находится машина под названием Antiproton Decelerator, в кольце которого улавливаются и замедляются антипротоны для изучения их свойств и поведения.

В кольцевых ускорителях частиц вроде Большого адронного коллайдера частицы получают энергетический толчок каждый раз, когда завершают круг. Замедлители работают противоположным образом: вместо того чтобы разгонять частицы, их толкают в обратную сторону.

7. Нейтрино могут быть своими собственными античастицами

Частица материи и ее антиматериальный партнер переносят противоположные заряды, что позволяет легко их различить. Нейтрино, почти безмассовые частицы, которые редко взаимодействуют с материей, не имеют заряда. Ученые считают, что они могут быть майорановскими частицами, гипотетическим классом частиц, которые являются своими собственными античастицами.

Проекты вроде Majorana Demonstrator и EXO-200 направлены на определение того, действительно ли нейтрино являются майорановскими частицами, наблюдая за поведением так называемого безнейтринного двойного бета-распада.

Некоторые радиоактивные ядра распадаются одновременно, испуская два электрона и два нейтрино. Если нейтрино были бы собственными античастицами, они бы аннигилировали после двойного распада, и ученым осталось бы наблюдать только электроны.

Поиск майорановских нейтрино может помочь объяснить, почем существует асимметрия материи-антиматерии. Физики предполагают, что майорановские нейтрино могут быть либо тяжелыми, либо легкими. Легкие существуют в наше время, а тяжелые существовали сразу после Большого Взрыва. Тяжелые майорановские нейтрино распались асимметрично, что привело к появлению крошечного количества вещества, которым наполнилась наша Вселенная.

8. Антиматерия используется в медицине

PET, ПЭТ (позитронно-эмиссионная топография) использует позитроны для получения изображений тела в высоком разрешении. Излучающие позитроны радиоактивные изотопы (вроде тех, что мы нашли в бананах) крепятся к химическим веществам вроде глюкозы, которая присутствует в теле. Они вводятся в кровоток, где распадаются естественным путем, испуская позитроны. Те, в свою очередь, встречаются с электронами тела и аннигилируют. Аннигиляция производит гамма-лучи, которые используются для построения изображения.

Ученые проекта ACE при CERN изучают антиматерию как потенциального кандидата для лечения рака. Врачи уже выяснили, что могут направлять на опухоли лучи частиц, испускающие свою энергию только после того, как безопасно пройдут через здоровую ткань. Использование антипротонов добавит дополнительный взрыв энергии. Эта техника была признана эффективной для лечения хомяков, только вот на людях пока не испытывалась.

9. Антиматерия может скрываться в космосе

Один из путей, которым ученые пытаются разрешить проблему асимметрии материи-антиматерии, является поиск антиматерии, оставшейся после Большого Взрыва.

Alpha Magnetic Spectrometer (AMS) - это детектор частиц, который располагается на Международной космической станции и ищет такие частицы. AMS содержит магнитные поля, которые искривляют путь космических частиц и отделяют материю от антиматерии. Его детекторы должны обнаруживать и идентифицировать такие частицы по мере прохождения.

Столкновения космических лучей обычно производят позитроны и антипротоны, но вероятность создания атома антигелия остается чрезвычайно малой из-за гигантского количества энергии, которое требуется для этого процесса. Это означает, что наблюдение хотя бы одного ядрышка антигелия будет мощным доказательством существования гигантского количества антиматерии где-либо еще во Вселенной.

10. Люди на самом деле изучают, как оснастить космический аппарат топливом на антивеществе

Совсем немного антиматерии может произвести огромное количество энергии, что делает ее популярным топливом для футуристических кораблей в научной фантастике.

Движение ракеты на антивеществе гипотетически возможно; основным ограничением является сбор достаточного количества антивещества, чтобы это могло осуществиться.

Пока не существует технологий для массового производства или сбора антивещества в объемах, необходимых для такого применения. Однако ученые ведут работы над имитацией такого движения и хранения этого самого антивещества. Однажды, если мы найдем способ произвести большое количество антивещества, их исследования могут помочь межзвездным путешествиям воплотиться в реальности. опубликовано

Похожие публикации